Published Online October 2022 in IJEAST (http://www.ijeast.com)

AIR QUALITY AND EXCEEDANCE FACTOR OF ALWAR AND BHIWADI (RAJASTHAN)

Sadhana Chaurasia Head, Dept. of Energy & Environment, MGCGV, Chitrakoot, Satna, M.P. 485334

Swatesh Gupta PG Student, Dept. of Energy & Environment, MGCGV, Chitrakoot, Satna, M.P. 485334

Abstract: This study presents the concentration of air pollutants namely PM₁₀, PM_{2.5}, NO₂, SO_x and O₃, at two cities of Rajasthan India namely Alwar and Bhiwadi and their comparison with National Ambient Air Quality Standard to assess the air quality. The results Shows that gaseous pollutants such as SOx, NO2, and O3 were within the permissible limits in both the cities but particulate matter (PM₁₀, PM_{2.5})was found higher than permissible NAAQS limit in both cities. The maximum concentration of PM₁₀and _{PM2.5} was found 183.80 µg/m³ and 121 µg/m³respectively at Bhiwadi and Alwar. The study also shows that PM₁₀ and PM_{2.5} are criticaly polluting the ambient air quality of both cities. It may pose detrimental effect on human and environmental health. In this study AQI and Excedence factor was also calculated. AQI result reveal that air quality of Bhiwadi was in poor category. Exeedence Factor also indicate that PM_{10} and $PM_{2.5}$ are the predominate cause of air pollution in Bhiwadi and Alwar cities.

Keywords: - Air Quality, AQI, Pollution, Excedence Factor, PM_{10} , $PM_{2.5}$

I. INTRODUCTION: -

Air pollution poses a worldwide threat to human health and environment. Air pollution in urban area is mainly due to emissions of industrial gases and traffic related particulates, which undergo dispersion, transport and chemical reaction in the atmosphere and are deposited as gaseous ions, solid and liquid particles. In developing countries, the air quality crisis in urban areas is attributed to vehicular emissions, which contributes 40-80% of total air pollution. There are evidences that air quality is worsening in the developing countries. (Charan and Sahel 2014)

Rapid and unsystematic industrialization has become a major environmental concern for both developed and developing countries. Long-term and short-term effects on human health have been observed due to poor air quality.

The most prominent pollutants are particulate matter (PM₂₅ and PM₁₀), SO_x, NO₂, O₃, etc. and increased levels of these

pollutants have a direct impact on environmental health (Gulabchandani and Sethi). Cities are hotspots of air pollution due to high population densities, resulting in greater transportation activities. Lack of proper maintenance of vehicles is also a major cause of air pollution which results in poor air quality (Ruhela et al. 2022).

Air pollution seriously damages material sources such as building, various sculptures, and also vegetation. It may be due to particulate matter dispersed in it or gaseous pollutants completely miscible with it in all proportions. Gaseous pollutants such as SO_2 , NOx, CO_2 , etc., dispersed in air are the major source of air pollution. (Sarasamma and Narayanan, 2014).

Fig. 1 Showing location of Rajasthan in map of India

Fig. 2 Showing Location of Alwar in map of Rajasthan

Published Online October 2022 in IJEAST (http://www.ijeast.com)

Fig. 3 Showing location of Alwar and Bhiwadi in map of Alwar

Study Area:

Alwar is a district in the <u>state</u> of <u>Rajasthan</u> in northern <u>India</u>, district is situated in the north-east of Rajasthan between 27°34' and 28°4' north Latitudes and 76°7' and 77°13' east Longitudes.Bhiwadi is situated at 28.21°N, 76.87°E. It is 60 km away from <u>New Delhi</u> and 90 km From Alwar. Bhiwadi is a planned city located in Alwar district of the Indian state of Rajasthan. Bhiwadi is the fastest growing industrial town on the outskirts of Delhi.

The district has a dry climate with a hot summer, a cold winter and a short monsoon season. The cold season starts by about the middle of November and continues up to about the beginning of March.

Methodology: Ambient air monitoring was conducted during summer season from March 2022 to June 2022. 8-hour sampling was done for PM₁₀, PM_{2.5}, SO_x NO₂ and O₃. APM-460 respirable dust samplers (RDS) with provision for gaseous sampling APM-415 (Envirotech, New Delhi) was used for measuring the concentrations of PM₁₀, PM_{2.5}, NO₂, and SO_x, in the ambient air. The sampling inlet was placed 1-3 meter above the ground level, depending upon the site available for the RDS. Atmospheric air was drawn for 8 hours through the cyclone and 20 X 25 cm glass fiber filter (GFF) sheet at a flow rate of 1.0 to 1.2 m3min and finally the average flow rate was calculated.

In the present study, an attempt has been made to assess the prevailing concentration of the PM_{10} , $PM_{2.5}$, SO_x and NO_2 , in the fast-growing cites of Rajasthan (CPCB: 2003). AQI is calculated as per steps given in the CPCB report and computed on Microsoft Excel software and Exceedance factor is used to identify the level of pollution (critical, high, moderate, and low). Following is the equation to find the exceedance factor.

$$Exceedance \ Factor = \frac{\text{The annual average concentration of critical pollutant}}{\text{The annual standard for a particular pollutant}}$$

II. RESULTS AND DISCUSSION:

The sampling and analysis of ambient air quality parameters for two selected station was done for summer season in monthly interval. The results of ambient air quality of two different locations Alwar and Bhiwadi in Rajasthan.

Table: 1 Air Quality data of Alwar

S. No.		Parameter	Parameter					
	Sampling	PM2.5	PM10	SOx	NO2	О3		
1	S1	58.12	134.63	30.78	68.11	39.08		
2	S2	62.99	129.70	33.61	62.78	44.21		
3	S3	69.37	137.44	29.20	68.92	48.23		
4	S4	65.75	143.29	31.82	71.24	47.58		
5	Mean	64.06	136.27	31.35	67.76	44.78		
6	±SD	4.74	5.67	1.85	3.58	4.19		

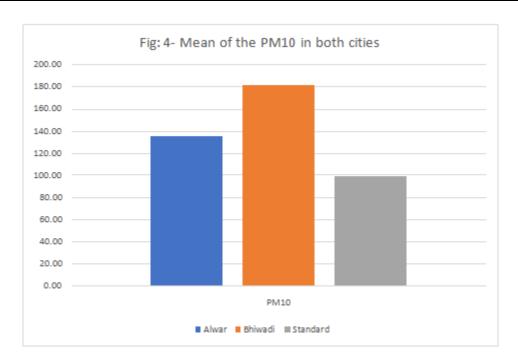
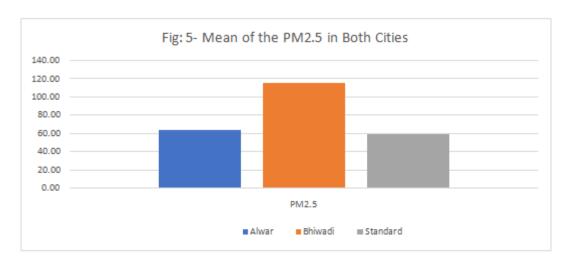
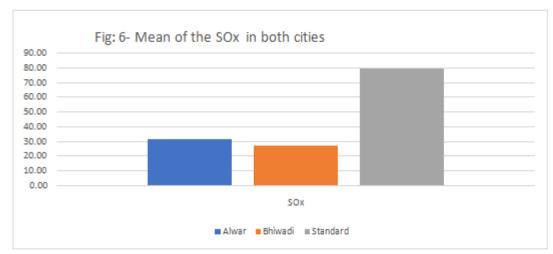
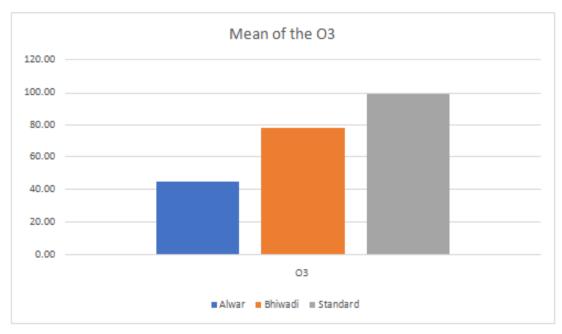

Published Online October 2022 in IJEAST (http://www.ijeast.com)

Table: 2 Air Quality Data of Bhiwadi

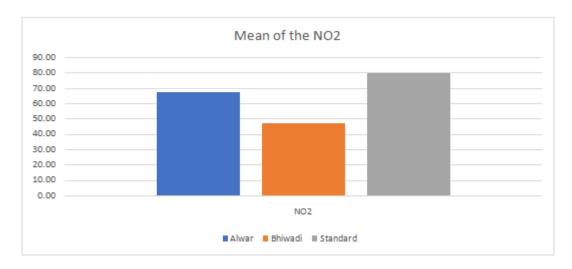
S. No.		Parameter	Parameter					
	Sampling	PM2.5	PM10	SOx	NO2	03		
1	S1	113.83	182.68	26.19	56.47	78.82		
2	S2	118.36	177.92	27.88	58.12	77.29		
3	S3	111.52	183.80	26.32	57.18	79.02		
4	S4	121.00	181.92	28.81	61.11	80.17		
5	Mean	116.18	181.58	27.30	58.22	78.83		
6	±SD	4.29	2.56	1.27	2.04	1.18		


Table: 3 Mean data of Study Area


Station	Alwar	Bhiwadi	Standard
PM2.5	64.06	116.18	60
PM10	136.26	181.58	100
Sox	31.35	27.30	80
NO2	67.76	47.47	80
03	44.77	78.82	100



Published Online October 2022 in IJEAST (http://www.ijeast.com)



Published Online October 2022 in IJEAST (http://www.ijeast.com)

The monthly average concentration of PM10 varied from 129.70 to 143.29 μ g/m3 at Alwar and 177.92 to 183.80 μ g/m3 at Bhiwadi. The mean of PM10 at Alwar (136.27 \pm SD.5.67) and Bhiwadi (181.58 \pm SD.2.56) is the Value of PM10 is higher than standard limit (fig-4).

The monthly average concentration of PM2.5varied from 58.12 to $69.37 \mu g/m3$ at Alwar and 111.52 to $121 \mu g/m3$ at Bhiwadi. The mean of PM10 at Alwar ($64.06 \pm SD.4.74$) and Bhiwadi($116.18 \pm SD.4.29$) is the Value of PM2.5 is higher than standard limit (fig-5).

The monthly average concentration of SOx varied from 29.20 to 33.61 μ g/m3 at Alwar and 26.19 to 28.81 μ g/m3 at Bhiwadi. The mean of SOx at Alwar (31.35 \pm SD.1.85) and

Bhiwadi (27.30±SD.1.27) is the Value of SOx is within standard limit (fig-6).

The monthly average concentration of NO2 varied from 62.78 to 71.24 μ g/m3 at Alwar and 56.47 to 61.11 μ g/m3 at Bhiwadi. The mean of NO2 at Alwar (67.76 \pm SD.3.58) and Bhiwadi (58.22 \pm SD.2.04) is the Value of NO2 is within standard limit (fig-7).

The monthly average concentration of O3 varied from 39.08 to $48.23\mu g/m3$ at Alwar and 77.29 to $80.17\mu g/m3$ at Bhiwadi. The mean of O3 at Alwar ($44.78\pm SD.4.19$) and Bhiwadi ($78.83\pm SD.1.18$) is the Value of O3 is within standard limit (fig-8).

Table 4 National Ambient Air Quality Standard (2009)

			Concentration in ambient air		
S.NO.	Name of Pollutant	Time weighted average	Industrial, residential, Rural & other Area	Ecologically sensitive area (notified by central government	
		Annual	50	20	
1	$SOx (\mu g/m^3)$	24 hours	80	80	
		Annual	40	30	
2	$NO_2 (\mu g/m^3)$	24 hours	80	80	
		Annual	60	60	
3	$PM_{10} (\mu g/m^3)$	24 hours	100	100	
		Annual	40	40	
4	$PM_{2.5}(\mu g/m^3)$	24 hours	60	60	

Source: CPCB, 2009

Published Online October 2022 in IJEAST (http://www.ijeast.com)

AQI:

Station	AQI	Category
Alwar	124	Moderate
Bhiwa di	287	Poor

Table 6: - AQI of Panipat and Manesar

AQI of various selected location were calculated and given in table. Alwar was found within range of 100-200. Which indicate moderate air quality. Bhiwadi was found within

range of 201-300. Which indicates poor air quality. Its May cause breathing discomfort to people on prolonged exposure and discomfort to people with heart disease

Table 5: - Air Quality Index Value Remark and Health Effects

Index		
Value	Remark	Health Effects
0-50	Good	Minimal Impact
51-100	Satisfactory	Minor breathing discomfort to sensitive people
101-200	Moderate	Breathing discomfort to the people with lung
		May cause breathing discomfort to people on prolonged exposure
201-300	Poor	and discomfort to people with heart disease
		May cause respiratory illness to the people on prolonged exposure.
		Effect may be more pronounced in people with lung and heart
301-400	Very Poor	disease
		May cause respiratory effects even on healthy people and serious
		health impact on people with lung/heart diseases. The health impact
>401	Severe	may be experienced even during light physical activity

Exceedance factor: The exceedance factor is the average concentration of critical pollutants and their corresponding national air quality standard.

According to their critical pollution level exceedance factor divided into various categories;

Table 9 Exceedance factor with their respective range

Level of pollution	Exceedance factor
Low pollution	< 0.5
Moderate pollution	0.5-0.9
High pollution	1.0-1.4
Critical pollution	>1.5

(UEAST)

Published Online October 2022 in IJEAST (http://www.ijeast.com)

Parameter	Excee	dance Factor	Level of Pollution	
1 11 11 11 11 11 11	Alwar	Bhiwadi	Alwar	Bhiwadi
PM2.5	1.07	1.94	High pollution	Critical pollution
PM10	1.36	1.82	High pollution	Critical pollution
SOx	0.39	0.34	Low pollution	Low pollution
NO2	0.85	0.59	Moderate pollution	Moderate pollution
О3	0.45	0.79	Low pollution	Moderate pollution

Table 10: Exceedance factor

III. CONCLUSION

The results reveal that air pollution in Alwar and Bhiwadi is largely due to high PM_{10} and $PM_{2.5}$ level. This study shows that average concentration of SO_x and NO_2 and O_3 is well below the CPCB standard at both the cities. The AQI was found in moderate range in Alwar and poor-quality range in Bhiwadi. The exceedance factor was showing PM_{10} and $PM_{2.5}$ were major polluting factors. Study shows that the Bhiwadi is more polluted than Alwar.

IV. REFERENCE

- [1]. Agrawal G., Mohan D., Rahman H., (2021), "Ambient air pollution in selected small cities in India: observed trends and future challenges", IATSS Research, (pp 19-30)
- [2]. Bhuyan P.K., Samantray P., Rout S.P., (2010)," Ambient Air quality status in Choudwar Area of Cuttak District", Inter National Journal of Environmental Science, (pp 343-355)
- [3]. Chaudhary S., Kumar S., Antil R., Yadav S., (2021), "Air quality before and after covid-19 lockdown phases around new Delhi, India", Journal of Health & Pollution, (pp 1-11)
- [4]. Chaurasia S., Singh R., Tiwari A.K., (2020), "Air quality of Chitrakoot during covid-19 pandemic lockdown", International Journal of Scientific Development and Research, (pp 391-394)
- [5]. Chaurasia S., Singh R., Tiwari A.K., (2020), "Air quality of Chitrakoot during covid-19 pandemic lockdown", International Journal of Scientific Development and Research, (pp 391-394)
- [6]. CPCB (2003), Guideline for ambient air quality monitoring, central pollution control board, ministry of environment and forest, govt. of India, National Ambient Air Quality Monitoring Series: NAAQMS/25/2003-04.

- [7]. CPCB (2009), National Ambient air quality standards, central pollution control board, ministry of environment and forest, govt. of India, Notification New Delhi, 18th Novembers
- [8]. CPCB, Parivesh (2001) Air Pollution and human health, central pollution control board, moef, new Delhi public of ambient air quality in India A Review, International Journal of Science Technology & Engineering, (pp 237-244)
- [9]. Kumar P., Kuldeep, Gautam N., (2021)," An assessment of ambient air quality using AQI and exceedance factor for Udaipur City, Rajasthan (India)", WEENTECH Proceedings in Energy, (pp 94-106)
- [10]. Matandirotya N.R., (2021), "Research Trends in the field of ambient air quality monitoring and management in South Africa: A Bibliometric Review", Environmental Challenges, (pp 1-8)
- [11]. Sharma R., (2016) "Study of Air Quality Status of some cities of Rajasthan", IOSR Journal of Pharmacy and Biological Sciences: (pp 36-39)
- [12]. Yacout D.M.M., Hassouna M.S., (2016) "Identifying potential environmental impacts of waste handling strategies in textile industry", Environ Monit Assess: 188-445